The generator matrix

 1  0  1  1  1 X^2+X  1  1  0  1  1 X^2+X  1  1  0  1  1 X^2+X  1  1  0  1  1 X^2+X  1  1 X^2  1  1  X  1  1 X^2  1  1  X  1  1  1  1 X^2  X  1  1  1  1 X^2  X  X  X  0  X  1  1  1  1  1  1  1  1  X  0  X  X  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 X^2 X^2 X^2  0 X^2  X  X  X  X  1  0 X^2+X  X  1  0
 0  1 X+1 X^2+X X^2+1  1  0 X+1  1 X^2+X X^2+1  1  0 X+1  1 X^2+X X^2+1  1  0 X+1  1 X^2+X X^2+1  1 X^2 X^2+X+1  1  X  1  1 X^2 X^2+X+1  1  X  1  1 X^2  X X^2+X+1  1  1  1 X^2  X X^2+X+1  1  1  1  0 X^2+X  X X^2+X X+1 X^2+1 X+1 X^2+1  0 X^2  0 X^2  0  X X^2 X^2+X  X X^2+1 X^2+1 X^2+X+1 X^2+X+1 X^2+X X^2+X X^2+X X^2+X  X  X X+1 X^2+X+1  X  X X+1 X^2+X+1  X  X  X  X  X X^2  0 X^2 X^2  0  1  1  X  0  1
 0  0 X^2  0 X^2  0 X^2  0 X^2 X^2  0 X^2  0  0  0 X^2  0  0 X^2 X^2 X^2  0 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2  0  0  0  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2  0  0  0  0  0  0  0 X^2  0 X^2  0 X^2  0 X^2  0  0 X^2 X^2 X^2 X^2 X^2  0 X^2  0  0 X^2 X^2  0  0 X^2 X^2 X^2 X^2 X^2  0  0  0 X^2  0 X^2 X^2  0  0  0  0 X^2 X^2  0  0  0  0  0 X^2  0
 0  0  0 X^2 X^2 X^2 X^2  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2  0  0  0 X^2 X^2  0  0  0  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2  0  0  0 X^2  0 X^2  0 X^2  0  0 X^2  0 X^2  0 X^2 X^2 X^2 X^2  0  0 X^2 X^2  0  0 X^2 X^2  0  0 X^2 X^2 X^2  0  0 X^2  0 X^2  0 X^2 X^2  0  0 X^2 X^2 X^2 X^2  0  0  0  0 X^2 X^2  0  0  0 X^2  0 X^2 X^2  0  0  0  0 X^2

generates a code of length 96 over Z2[X]/(X^3) who�s minimum homogenous weight is 94.

Homogenous weight enumerator: w(x)=1x^0+54x^94+70x^95+25x^96+40x^97+38x^98+12x^99+5x^100+4x^102+4x^103+2x^111+1x^116

The gray image is a linear code over GF(2) with n=384, k=8 and d=188.
This code was found by Heurico 1.16 in 0.521 seconds.